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Evidence accumulation models (EAM) have proven to be an invaluable tool
in probing the dynamical properties of decisions over recent decades. How-
ever, much of this literature has studied decisions utilizing simple stimuli
where the experimenter has perfect knowledge and control over stimulus
properties. Here we develop and test a new method for studying decisions
involving naturalistic stimuli (medical images in this case) where the exper-
imenter has neither perfect knowledge nor control of the stimuli properties.
The central challenge in studying such decisions is to extract useful repre-
sentations of images that can be associated with accumulation or drift rates
in EAMs. Here we couple a deep convolutional neural network (CNN) with
the diffusion decision model (DDM) to study how expert pathologists and
novices make decisions involving the classification of digital images of blood
cells as either normal (Non-Blast) or cancerous (Blast). In our approach,
the CNN is the basis of a function that translates each image into a drift
rate for use in the DDM. Results of fitting the joint CNN-DDM model to
choice and response time data demonstrates that 1) both novices and experts
demonstrated substantial speed accuracy tradeoffs, 2) both were susceptible
to biases introduced by the presentation of pre-stimulus probabilistic cues,
and 3) experts were more adept at extracting useful information from images
than novices. These results demonstrate that this is a fruitful approach to
studying decisions involving complex stimuli that will open new avenues for
studying questions not possible with existing methods. Furthermore, this
approach is technically feasible and has the potential to be translated into
other domains of decision making research.

Keywords: diffusion decision model, convolutional neural network, medical
image perception, Bayesian parameter estimation

Introduction

In many real life situations, individuals must make decisions based on complex visual
information. These decisions range from deciding whether a weed growing in your garden is
poisonous to a radiologist determining if a lung nodule is cancerous. In order to understand
how these decisions are made and why errors sometimes occur, it is critical to understand
how stimuli information influences the decision process.

Within the domain of simple perceptual decisions, several decades of research has
shown that decisions are made through a process of evidence accumulation (Edwards, 1965;
Ratcliff, 1978; Shadlen & Newsome, 1996; Gold & Shadlen, 2001; Smith & Ratcliff, 2004;
Brown & Heathcote, 2008; Ratcliff & McKoon, 2008). That is, during the course of the
deliberation, sensory evidence builds up for different responses. A choice is made once the
accumulated evidence reaches an internally controlled threshold. While there are many

WRH and JST were supported by National Science Foundation Grant SES-1556325.



JOINT DEEP NEURAL NETWORK AND EVIDENCE ACCUMULATION MODELING 2

different computational instantiations of the evidence accumulation process, these models
all assume that the rate at which evidence is accumulated is governed by the strength of
stimulus information (modeled through a parameter called the drift rate). For example,
consider the popular Random Dot Motion (RDM) discrimination task (Ball & Sekuler,
1982; Britten, Shadlen, Newsome, & Movshon, 1992, 1993) where participants view a cloud
of dots, some of which move randomly and some of which move coherently, and are asked
to choose the dominant direction of motion. In this paradigm, the drift rate is associated
with the proportion of dots moving coherently (e.g., Hawkins, Forstmann, Wagenmakers,
Ratcliff, & Brown, 2015). When the coherence level is low (e.g., only 10% of dots move in
the same direction), the drift rate is small, reflecting the weak stimuli information. On the
other hand, when the coherence level is high (e.g., 30% of dots move in the same direction),
the drift rate is large, reflecting the strong stimuli information. More generally, in simple
perceptual tasks, a different drift rate is typically associated with different stimuli (e.g., a
RDM task with four coherence levels would have four drift rates). This approach allows
modelers maximum flexibility to investigate the impact of stimuli strength on decision
processes.

One of the current limitations in the application of evidence accumulation models to
complex perceptual tasks (such as those involving naturalistic images) is linking stimulus
information to the drift rate. In these cases, how does one translate each image into a
numeric drift rate? In the present paper, we develop a framework for addressing this issue,
and as an example, focus on the real world task of diagnosing cancer from images of white
blood cells. In this task, the stimuli are a set of 300 unique images of white blood cells.
Using the standard approach of allowing a separate drift rate for each stimulus would lead
to a model with 300 drift rates, which is clearly intractable. An alternative approach is
to break the images into classes and treat all images within each class as identical (as was
done in Trueblood et al., 2018). In this prior study, the 300 images were grouped into four
categories based on the image type (cancer or non-cancer) and difficulty (easy or hard)
based on ratings from experts. Using these four categories, four drift rates were used in the
modeling the data. Second, it requires extra information to determine the relevant classes;
in this case, difficulty ratings from experts is required, which was time consuming to collect
and might not be available for all tasks.

In the current paper, we propose an alternative way of addressing this issue for com-
plex perceptual tasks involving naturalistic images. Specifically, we develop a deep convo-
lutional neural network (CNN; eg., LeCun, Bengio, & Hinton, 2015) to provide a repre-
sentation for each image. This representation is then used to translate each image into a
drift rate where the numeric value of each drift rate is determined (using the CNN) by the
characteristics of that image. This approach allows for maximum flexibility in incorporat-
ing stimuli information in an evidence accumulation model while retaining computational
tractability.

This approach is also tractable and relatively simple to implement since it marries two
well established quantitative analysis tools. First, pre-trained CNNs are lightly augmented
and partially re-trained. The use of existing networks is of paramount importance since
developing CNN’s from scratch can be time consuming and require significant expertise.
Performing only partial training of the CNN also speeds the process and reduces the need
for vast numbers of training images, which is often not feasible. Second, the canonical
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Diffusion Decision Model (DDM; Ratcliff, 1978) is used to model the decision making process
(though any evidence accumulation model could in principle be used), with the CNN output
serving as an input to the DDM. Numerous software implementations of the DDM have
also been developed (e.g., Voss & Voss, 2007, 2008; Vandekerckhove & Tuerlinckx, 2007;
Vandekerckhove, Tuerlinckx, & Lee, 2011). Thus existing models and software can be
leveraged to implement this approach.

Models and Methods

In this paper, we develop and compare two models of medical image based decisions.
One is a standard extension of the DDM that is included mainly for comparison purposes.
The primary model being studied is a joint convolutional neural network (CNN) and DDM
modeling platform to model decisions at the level of individual images. At a broad level, this
model uses a partially custom CNN to assign a probability of being a cancer cell (termed
a ‘Blast’ cell and denoted by Ppgus¢) to each image in the image bank (see Figure Al for
example images), which is then transformed into a drift rate to represent that image in
the DDM. This joint CNN-DDM is then fit, at the level of individual trials, to choice and
response time (RT') data using hierarchal Bayesian techniques. See Figure A1 for an overall
schematic of this joint modeling approach. Below, we provide more details on this process.

The two models we discuss are both based on the standard DDM framework. The
DDM predicts the distributions of choices and response times for a particular decision as
a function of the strength of stimulus information (captured by the drift rate) and other
parameters (mainly start point bias and threshold). The two models differ in how the
drift rate is determined. In the primary model the drift rate associated with each image is
determined by the output of the CNN. Thus in this model, each trial is independent, has
its own associated drift rate, and no collapsing over trials is performed. From here on, we
refer to this as the “CNN-DDM” model.

We compare this to a second, simpler model where images are categorized into classes
as is commonly done. In addition to classifying each image in this data set as either Blast
(cancer) or Non-Blast (non-cancer), a group of medical experts also provided an assessment
of difficulty for each image. We used this second piece of information to classify each image
as either “easy” or “hard”. This yields four image classes based on the Blast / Non-Blast
and Easy / Hard designations. In the second model, we collapsed over these four discrete
classes and estimate a separate drift rate for each class. From here on, we will refer to this as
the “Discrete Drift” model. Our purpose here is to compare the inferences one would make
using this second, more standard modeling approach with the novel CNN based approach.
Thus where relevant, we will directly compare parameter estimates (e.g., the diffusion model
threshold) obtained with these two modeling approaches.

Diffusion decision model

Here we use a canonical diffusion decision model to investigate medical image based
decisions. Specifically, we use a version that includes non-decision time (¢yp), start point
bias (z), threshold (a), and a stimulus dependent drift rate (v). In the case of the Discrete
Drift model, four separate drift rates will be estimated for the four image classes (e.g., hard
Non-Blast). Importantly, in the CNN-DDM case, the drift rate (v;) for image i is derived
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from the characteristics of the medical image itself. That is to say, each individual image
will have its own associated drift rate, which is determined by translating this image into a
probability of being a Blast cell using the CNN approach described below. In this way, the
characteristics of individual images, as determined by the CNN, determine the strength of
evidence that forms the basis of the drift rate for that individual image. In the subsequent
section, we discuss how this drift rate is determined and identify the model parameters
associated with the drift rates that will be estimated. For simplicity and to make Bayesian
hierarchal fitting of this data tractable, we do not include trial to trial noise variations in
either start point or drift rate (typically referred to as sz and sv). In the CNN-DDM model,
each image is treated as a single trial condition, and thus it is highly unlikely that these
parameters would be estimable.

Translating images to probabilities using a deep CNN

To translate each medical image into a single numeric probability of being a Blast
or non-Blast, we augmented a GooglLeNet deep CNN (Szegedy et al., 2015) that was pre-
trained on the ImageNet database (we downloaded the fully pre-trained network). At a basic
level this network (or any other CNN) consists of a sequence of layers that break images
down into a feature vector (FV) followed by a sequence of layers that classify those images
on the basis of those FVs. We took this pre-trained network and removed the classification
layers, leaving only the layers that translate an image into a F'V. We then added a single
softmax classification layer that translates that FV into a probability of being a Blast cell
(Ppiast). We chose a softmax layer specifically since its output can be interpreted as a
probability of belonging to that class.

The following process was used to train this augmented network using “transfer learn-
ing”. The pre-trained GooglLeNet was imported through Matlab’s Deep Learning Toolbox
using the Add-On Explorer. An image bank of 606 images (326 Blast and 280 NonBlast)
were utilized. All images were pre-processed for use with this network by converting them
to single precision arrays of size 224 pixels by 224 pixels. This image bank was broken
into a training set (80%) and a validation set (20%). Matlab’s Deep Learning Toolbox was
used to train this network. In order to reduce the likelihood of overfitting, L2 regulariza-
tion was used. The weights of the first 10 layers of the network were frozen (e.g. fixed at
their pre-trained parameter values to reduce training time and prevent overfitting) and the
newly added softmax layers were assigned a higher learning rate of 10 to facilitate their
training. All intermediate layers were assigned the baseline learning rate of 1. Standard
mini-batch stochastic gradient descent was used for training. After training of this network
it had a classification accuracy of 94% on the validation set and 98% on the training set.
This indicates the network exhibits adequate accuracy without overfitting, though the 4%
gap indicates room for improvement, which is beyond the scope of this article. For fur-
ther implementation details, see the Matlab Live Script (Matlab’s equivalent of a Jupyter
Notebook) that was used to train this network, which is available on the Open Science
Framework at https://osf.io/j5hvp/.

At completion of training, the resulting network is used to extract classification
probabilities for each image. This is then transformed into a log odds value via LO =
log (PBiast/ PNonBlast)- For an individual image, the output log odds value is then used to
construct a drift rate as described in the subsequent section.
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Coupling the CNN with the diffusion model

The CNN described above takes each medical image and produces a measure of the
stimulus information (i.e., the log odds) for that image. In particular, the LO provides
both classification and strength information about each individual image. Negative (resp.
positive) values correspond to Non-Blast (resp. Blast) images while values closer to 0
indicate less conclusive information while values further from 0 indicate more conclusive
information. To connect the output of the CNN (LO) to the input of the DDM (drift),
we utilize a linear function to map LO values into a drift rate, v = Vinter + Vsiope * LO.
Here, vinter and vgope are additional participant level model parameters that are estimated.
Uslope 1 particular measures how adept participants are at translating visual information
encoded in the images into evidence for either alternative. So for example we may expect
this parameter to be smaller for novices than experts (see later results). Note that while
we utilize a linear mapping from log-odds to drift rate in this application, in principle more
complex mappings could potentially be included. For example, a saturating function that
asymptotes at large log-odds values could be incorporated. There is no technical restriction
on this functional from an implementation perspective. However it does lead to more
parameters to estimate and a generally more complex model. Since the questions at hand
do not warrant this added complexity, we have opted for simplicity in this application.

Hierarchal Bayesian parameter estimation

We fit two models, the CNN-DDM and discrete drift models, to choice-RT data
in order to compare parameter estimates between the two and compare / contrast the
inferences from them. As described in the Experimental Data section, the experiment
consists of three conditions: Speed, Accuracy, and Bias. Furthermore, the images can be
broken into four classes: easy Blast, easy Non-Blast, hard Blast, and hard Non-Blast.

Rather than fix certain parameters across conditions, we fit the speed, accuracy, and
bias conditions completely separately for each model. The discrete drift model thus consists
of seven parameters that are fit to each condition (eight in the case of the bias condition):
threshold, start-point bias, non-decision time, and four drift rates corresponding to the four
image classes. In the case of the bias condition, an additional start-point bias (one for
cued conditions and one for non-cued conditions) is present. Thus the seven parameter
model is fit separately to the speed and accuracy conditions and the slightly extended eight
parameter model is fit to the bias condition.

The CNN-DDM is similarly fit to each instruction condition separately. It is a five (or
six in the bias condition case) parameter model with the following parameters: threshold,
start-point bias, non-decision time, and two parameters for the drift rate function (viner
and vgepe). In the bias condition, there are once again two start-point bias parameters, one
for the cue and another for the non-cued trial types. This five parameter model is fit to the
speed and accuracy conditions separately and the slightly extended six parameter model is
fit to the bias condition data.

In total, twelve model fits were performed. Specifically, the discrete drift model
and CNN-DDM (two models) were fit to the separate conditions (three conditions) for
both expert and novices (two experimental populations). In each case, we used Hierarchal
Bayesian parameter estimation to estimate both group and individual level parameters
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simultaneously. All figures depict posterior distributions for hyper mean parameters. The
DEMCMC algorithm (Turner & Sederberg, 2014) was used. In order to efficiently calculate
the DDM likelihood function, we used a variant of the algorithm in Navarro and Fuss (2009)
where the short and long time series expansion times of the WFPT (Weiner First Passage
Time) infinite series truncated at four terms (which yield errors < le — 5). The intra-trial
variability parameter for the DDM was fixed at s = 0.1 as is common. See the Appendix
for specification of the model priors.

Experimental Data

The data used for the modeling is from Trueblood et al. (2018), which examined
the ability of novice undergraduate students and pathologists (residents and faculty) to
distinguish between normal (standard white blood cells such as monocytes, lymphocytes,
or neutrophils) and abnormal peripheral cells (blast cells, associated with acute leukemia)
in clinical images.

Participants. 37 Vanderbilt University undergraduate students participated in the
experiment for course credit. 19 pathologists from the Vanderbilt University Medical Center
(VUMC) participated in exchange for a $15 gift card.

Materials. The stimuli were 300 digital images of Wright-stained white blood cells
taken from anonymized patient peripheral blood smears at VUMC. The images were taken
by an automated digital cell morphology instrument called the CellaVision DM96 (CellaV-
ision AB, Lund, Sweden). Half of the images contained blast cells and the other half
contained non-blast cells. In each category, half of the images were easy and half were hard.
Thus, in total, there were 75 images in each of the four following categories: easy blast,
hard blast, easy non-blast, and hard non-blast. These classifications were based on ratings
from three hematopathology faculty from the Department of Pathology at VUMC. Details
of the rating procedure and classification process can be found in Trueblood et al. (2018).

Procedure. All participants first completed training to familiarize themselves with
blast cells. The main task consisted of six blocks with 100 trials in each block (25 images
from each category). On each trial, participants were shown a single image and had to
identify it as a blast or non-blast cell. There were three manipulations across blocks:
accuracy, speed, and bias. In the accuracy blocks, participants were instructed to respond as
accurately as possible and were given 5 seconds to respond. In the speed block, participants
were instructed to respond quickly and were given 1 second to respond. In the bias blocks,
participants were shown a probabilistic cue on half of the trials. The cue was a red dot that
appeared before the image and identified the upcoming image as most likely being a blast
cell. The cue was valid 65% of the time and participants were instructed about the validity.
Full details of the procedures can be found in Trueblood et al. (2018).

Results

We first assess whether the CNN accurately classifies images in this data set. Sub-
sequently, we fit the CNN-DDM and the discrete drift models to the choice-RT behavioral
data and discuss results.
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Validating the log odds output of the CNN as a measure of stimulus information

One of the primary goals of this approach is to use the CNN as a front end to the
DDM to translate each image into a numeric value that represents the stimulus information
in that image. Thus, first and foremost, the CNN must be able to accurately classify
each image. We thus first determined the accuracy of classification. Figure A2a shows the
classification accuracy for the hard and easy images respectively. Note that accuracy was
measured on a set of test images that were not used in the training process, as is standard.
Results show that indeed the CNN exhibits good accuracy. Furthermore, that accuracy is
slightly lower on images determined by experts to be more difficult to classify.

In addition to measuring classification accuracy, we analyzed the distributions of
output log odds values for the easy and difficult image classes (Figure A2b). Results show
that, at a distributional level, easier images are assigned larger (in magnitude) LO values. In
other words, easier images to classify are translated into a stronger strength of information
while harder images are translated into a weaker strength of information. We caution that
while this is true at the distributional level, it is not necessarily true for every image and
some easy images will be assigned smaller LO values than other hard images as evidence
by the overlap in LO distributions. It is possible that a fully purpose built CNN (e.g. a
network that is designed and fully trained on the Blast cell classification task) may produce
a stronger association between difficulty classification and LO assignment. This presents a
number of technical challenges that are beyond the scope of this paper however.

In addition to producing a log-odds value to represent strength of information, each
image can also be translated into a high dimensional (1024 dimensions in the case of
GoogLeNet) feature vector. We next assessed whether Blast and Non-Blast images nat-
urally cluster in this high dimensional feature vector space. To assess this, we utilized
t-distributed stochastic neighbor embedding (tSNE, Maaten & Hinton, 2008) to visualize
the cloud of feature vectors in this high dimensional space. Briefly, this is a non-linear
dimension reduction technique that facilitates the visualization of high dimensional data.
Results (Figure A2c) show that indeed the data set does cluster into two clusters of Blast
and non-Blast images. Note that tSNE does not use the image labels in producing this
embedding. The color coding is added after tSNE is applied. Thus the two clusters natu-
rally appear in this data. This is expected since the CNN effectively classifies the images.
None-the-less, it does raise the possibility of using these high-dimensional feature vector
representations to calculate measures such as image similarity in future studies.

In conclusion, it is reasonable to use the LO output of this CNN as a measure of the
stimulus type and strength for this task. At a binary level, it accurately assigns negative
LO values to Non-Blast images and positive LO values to Blast images. Furthermore, at
a distributional level it assigns larger LO values to easier images and smaller LO values to
more difficult images. The CNN also naturally produces clusters representing Blast and
Non-Blast image classes in feature vector space, which opens new possibilities for future
studies use CNN based similarity measures in studies.

Model fitting and parameter estimation

We next fit the CNN-DDM and the discrete drift models to the behavioral data. Both
models were fit to the two experimental populations (expert and novice) along with the three
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experimental conditions separately, totaling six fits of each model. Figure A3 demonstrates
the quality of fit for the CNN based model. Results show that model predictions of choice
proportions are generally in good agreement with data as are mean response times for the
speed an accuracy conditions. There is some discrepancy in the mean response times for the
Bias condition. We however note that in these quantifications, we have calculated choice
proportions and mean RTs for each of four categories: easy Blast, easy Non-Blast, hard
Blast, and hard Non-Blast. This inherently assumes that there are distributions of choices
and response times for each of these four conditions. While this collapsing over trials within
a condition is common and reasonable in most scenarios (e.g those using standard DDM
modeling where trials are grouped according to some commonality), trials were not grouped
in any way when fitting the CNN-DDM. Rather, each trial was treated as an individual,
distinct condition. Thus this collapsing is somewhat artificial and these comparisons should
be interpreted with care. In the future, new methods that do not rely on these summary
statistics need to be devised for this kind of modeling. We also note that the standard
DDM was shown to fit this exact data well in Trueblood et al. (2018), and thus we do
not duplicate those results here. In the figures that follow, violin plots depicting posterior
distributions of the relevant hyper means are used to visualize model results.

Our intent here is not simply to provide a model based analysis of this medical decision
task because this has been presented and analyzed previously in Trueblood et al. (2018). We
are also not attempting to determine which model is “better” since they represent different
approaches and require different data to be used (the discrete drift model requires difficulty
data while the CNN-DDM does not). Rather, our purpose is to compare the conclusions
one would draw from the two modeling approaches: the more standard discrete drift model
and CNN-DDM model. We thus focus the discussion on comparison of parameter estimates
between the models and conclusions that would be drawn from the different approaches.

Estimates for the threshold parameters (Figure A4) show two important results. First,
applying time pressure in this medical context yields the standard effect of reducing the
response threshold without altering other model parameters (see remaining figures). This
is seen in both novices and experts using both the CNN-DDM and discrete drift models.
More interestingly, the quantitative estimates of thresholds found with the CNN-DDM and
discrete drift models are similar. Thus not only is the qualitative inference about the
effect of time pressure the same for both models, the CNN-DDM yields similar parameter
estimates for the threshold. Inspection of the bias parameter (Figure A5) and non-decision
time parameter (Figure A6) show similar results; the two models yield similar parameter
estimates.

While the drift parameters cannot be directly compared between the two models,
analysis of those parameters yield similar conclusions as well. Comparison of drift rates
between experts and novices in the discrete drift model (Figure A7) indicate that experts
exhibit higher drift rates, likely due to the fact that they are more experienced and more
adept at extracting useful information from these images. Inspection of the drift slope
parameter from the CNN-DDM model (Figure A8) similarly shows that experts have a larger
drift slope. Recall that drifts in the CNN-DDM are determined by v = vipter + Vsiope * LO.
Vslope thus represents the extent to which stimulus information in the image is translated
into evidence in the DDM process. A higher value of this parameter in experts indicates
that they are better able to extract that stimulus information and utilize it in the decision
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process.

Taken together these results suggest that this CNN-DDM approach yields the same
qualitative inferences as the discrete drift model. Namely, that time pressure leads to a
reduction in thresholds, the introduction of a cue leads to a slight start point bias, and
that experts are more adept at translating the image characteristics into stimulus informa-
tion. Furthermore, the quantitative estimates for threshold, bias, and non-decision time
parameters, which the models share, are very similar.

General Discussion

Evidence accumulation models are one of the foundational tools on which our quan-
titative understanding of the temporal dynamics of decisions has been built. Much of the
work in this domain however has centered on the study of decisions involving simple decision
tasks such as the random dot motion task. In many real life situations however, decisions
are based on complex visual information (medical images in the specific example presented
here). Here we describe a new modeling approach that extends canonical EAMs to study
decisions involving naturalistic stimuli.

One of the challenges in this domain is extracting a measure of strength of information
from the stimuli, which is necessary to associate drift rates in EAMs with the stimuli.
Unlike common, simple perceptual stimuli where the experimenter has precise knowledge
(and control) of the stimuli characteristics, it is difficult to quantify the level of difficulty
for naturalistic images (e.g., “how much” a given image looks like a blast or non-blast cell).
In this new approach, we utilize a convolutional neural network to extract this information
directly from the images themselves. In this way, the CNN serves as the basis of a function
that translates images into drift rates.

In this study, we have shown that this approach is effective at yielding useful psycho-
logical inferences. First, these results demonstrate that this deep CNN can be effectively
trained even on these complex medical image stimuli with as few as a few hundred images,
which is a prerequisite for its further application. Second, with this CNN as the basis of
a function that maps images into drift rates, the resulting joint CNN-DDM model can be
fit to canonical choice and response time data using existing parameter estimation tech-
niques (hierarchal Bayes in this case). Third, fitting this model to data to make parameter
based inferences yields sensible conclusions. In particular, the addition of time pressure
affects decision thresholds while the presentation of probabilistic cues yield alterations in
the start-point bias parameters. This study thus validates this CNN-DDM approach and
demonstrates that it yields reasonable psychological conclusions.

We do note that in this study we have made the rather strong assumption that the
visual information extracted (e.g. feature vectors and log-odds values) from these images is
identical for novices and expert pathologists. This, of course, is unlikely to be the case due
to the extensive training experts receive. One avenue of future study would be to consider
methods to augment the CNN element of this model to account for this. T'wo possibilities,
for example, would be to assume that experts represent images with a higher dimensional
feature vector than novices or to study the effects of adding noise to these feature vector to
account for novices potentially having a noisier representation of image features.

This approach has a number of benefits over existing methods of modeling decisions
with complex stimuli. First, it has the potential to simplify data collection and the design
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of experiments. In our original study involving these images Trueblood et al. (2018), we
had expert physicians rate images based on their difficulty. This is time consuming and
requires experts, “difficulty” is an inherently subjective measure, and collection of such data
may not always be possible. This approach thus frees one of the constraints of needing to
collect this kind of preliminary data prior to performing a study. That said, some data
curation is still required for this approach. Training a CNN requires labeled data and thus
classification of a training data set (as Blast or non-Blast in this case) is required. However,
with this CNN approach, it may not be necessary to provide expert classifications for the
full data set (only enough for training is required) and difficulty data is no longer needed,
both of which can simplify data collection.

It also opens up new possible avenues of study since decisions in this domain can now
be studied at the level of individual choices for specific images. For example, does one image
influence the perception of the next image, even though from a medical perspective they
should be independent? Are errors confined to specific types of images and do these images
share similar features? These and other questions are only possible with an approach such
as the one described here.

Relation to prior work

Recent prior studies have also attempted to couple CNNs with cognitive models by
using CNNs to produce representations of images that are then incorporated into the cogni-
tive models. Annis and Palmeri (2018) coupled the output of a CNN to the Linear Ballistic
Accumulator Model (Brown & Heathcote, 2008) in order to study object recognition. This
study however utilized a network that received no training on the images of interest. While
this may have been suitable for their study, we found that some training of the network
in this medical task (as described in the methods) was absolutely required as the high di-
mensional feature vector representations of images that were generated by the naive CNN
did not cluster at all (e.g. the gold and black points in Figure A2c completely overlapped).
Additionally, our study went beyond asking whether the joint CNN - EAM could fit the
data (which was the primary focus of Annis and Palmeri (2018)) and instead assessed the
quality of the psychological conclusions obtained from the model. Sanders and Nosofsky
(2018) alternatively coupled CNNs with the Generalized Context Model (Nosofsky, 1986)
to study categorization. Our study differs from this in two primary ways. First, they
performed substantially more manipulations of their CNN (they removed and added more
CNN layers than we did). While this provides more flexibility, it also adds more complexity
and we found it not to be necessary here. More significantly, they coupled the CNN with
a different type of model (GCM versus EAMs) to study a different type of decision. While
these studies in conjunction with that presented here investigate different types of decisions
using different CNN implementations, they are similar in spirit and demonstrate that CNNs
can provide adequate representations of image based stimuli and that there is a rich path
forward in coupling CNNs with cognitive models to study decision making.

Feasibility, practicality, and extension to other decision tasks

This coupled CNN-EAM modeling approach can be readily applied in other domains
involving image based decisions. This approach requires three elements to be carried out:
1) a decision task and image data set of interest, 2) a CNN to translate images into useful
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numeric information, and 3) a EAM that describes the decision process being studied. With
respect to the data, a labeled image set is required. That is, you must know what each
image is for purposes of training the CNN. In our application, 800 images was sufficient to
achieve > 95% accuracy. We tested the training of the CNN with ~300 images as well and
achieved accuracy of ~ 87%. Thus large image sets are not required.

While CNNs can be challenging to design and computationally intensive to train,
designing a novel network is not required for this application. The GoogleNet used in this
application was downloaded directly through Matlab (Python and other languages have
similar implementations and capabilities) and all manipulation and training of the resulting
augmented network were performed within Matlab. Furthermore, the training process itself
took < 30 minutes on a standard desktop computer. We also note that GooglLeNet was
chosen for convenience as it is relatively computationally efficient. We carried out the entire
end to end modeling process described using a pre-trained ResNet50 (He, Zhang, Ren, &
Sun, 2016) with identical results. Thus, at least in this case, the results appear to be
independent of the CNN used. We have provided a Matlab script dedicated to the CNN
training in order to serve as a starting point for anyone interested in utilizing this method
(available on the Open Science Framework at https://osf.io/j5hvp/).

The ultimate purpose of this study is to use choice and RT data to probe the decision
process. This required fitting an EAM to that data in order to extract model parameters
from the data. While we utilized the diffusion decision model and custom software for this
purpose, in principle any EAM model could be used (LBA for example Brown & Heath-
cote, 2008) and existing software packages could be utilized instead (such as the HDDM
packageWiecki, Sofer, & Frank, 2013). In particular, recent development of the Probability
Density Approximation (PDA) method for fitting complex models to data (Holmes, 2015;
Turner & Sederberg, 2014; Holmes, Trueblood, & Heathcote, 2016; Holmes & Trueblood,
2018; Evans, Holmes, & Trueblood, 2019; Trueblood et al., 2018) opens up the possibility
of investigating decisions using a range of different EAMs.

In conclusion, this approach is feasible and could be applied in a number of domains.
Only relatively modest amounts of data are required. The design and training of CNNs
is relatively simple and does not require significant expertise or computational capability.
Finally, existing EAMs can be used, for which numerous efficient software packages exist.
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Appendix
Model Priors

Two models were fit (to multiple data sets) in this article, the discrete drift DDM
and the CNN-DDM. Here we describe the priors used for hierarchal Bayesian estimation of
both models. Note that the DDM for this application specifies the thresholds to be [0, a]
rather than [—a,a] and that the intra-trial variability parameter is set to s = 0.1. Both
models contain four common parameters: threshold (a), bias (z), and non-decision time
(tnp). The same priors are used for these parameters in both models. The individual level
priors were

a,z ~ TN (a2, 0a,z,0,2), ,tNnp ~ TN (pnD;0ND,0.05,1), (1)

where T'N (i, 0, L, U) indicates the truncated normal with mean (p), standard deviation (o),
lower bound (L), and upper bound (U). For these parameters, the hyper level parameters
are distributed according to

ta,z ~ TN(1,0.5,0,10), 04 = E(1), (2)
unp ~ TN(0.15,0.5,0.05, 1), onp = E(0.5), (3)
where E()) is the exponential distribution with decay parameter A.

The models differ in their drift rate specifications. In the discrete drift rate model
there are four drift parameters. The individual level priors are similar for each with

v~ TN (uy,0p, —2,2), (4)

where
ty ~ TN(£0.5,0.5,—2,2), o, = E(1), (5)

and the + indicates a plus sign for Blast stimuli and the negative sign for Non-Blast stimuli.
For the CNN-DDM, there are two drift parameters corresponding to the slope and
intercept of the drift function. These are distributed according to

Uslope ™~ TN(,U/slopea O slope> 0, 10)7 Vinter = TN(/Jinterv Tinter, —10, 10) (6)
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The hyper parameters are then distributed according to

Islope ™~ TN(O.25, 1,0, 10), Oslope = E(l), (7)
Hinter ™~ TN(O, 1,10, 10)7 Ointer — E(l) (8)

Priors are the same for all fits of the speed, accuracy, and bias conditions.
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Figure A1. Model Schematic: A pre-trained Googl.eNet was augmented in order to use “transfer
learning” to train a deep CNN on the blast cell data set. The resulting network then outputs a
classification (Blast or non-Blast) probability for each image, which is transformed into a log-odds
value LO = log(P(B)/P(NB)). The drift rate for the subsequent diffusion model is then a linear
function of this LO, v = Vinter + Vsiope * LO.
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Figure A2. CNN Analysis: Panel a) Table showing the classification accuracy of the CNN for
both easy and hard images. Note that the easy and hard designations were never utilized during
training of the CNN and are only used for post-hoc analysis. Panel b) Distribution of log odds (LO)
values for the four image classes. Results demonstrate that, at the distributional level, the network
outputs smaller LO values (values closer to 0 that is) for images deemed to be harder to classify by
experts. Panel ¢) tSNE plot showing a low dimensional representation of the feature vectors (FV)
output by the CNN prior to classification. Colors indicating cell type are added after the tSNE
application. Thus results show a natural clustering of the FVs into two clusters that corresponds to

Blast and non-Blast cells.
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Figure A3. CNN-DDM Quality of Model Fit: Comparison of model predictions (vertical
axes) and observed (horizontal axes) for response proportions (a-c for experts and g-i for novices)
and mean response times (d-f for experts and j-1 for novices) in the three instruction conditions. The
solid diagonal line indicates perfect agreement where predictions and observations exactly coincide.
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Figure A4. Threshold Posteriors: Violin plots showing the posterior distributions of the thresh-
old values in the three experimental conditions for both novices and experts. Posteriors are grouped
so that the thresholds estimated using the discrete difficulty and CNN based models can be directly

compared.
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Figure A5. Bias Posteriors: Violin plots showing the posterior distributions of the bias values
in the three experimental conditions for both novices and experts. Bias is quantified as a fraction
of the threshold. Thus a bias of 0 indicates no bias and a bias of 0.05 indicates a start point bias
that is 5% of the distance to the threshold. In the “Bias” conditions, separate bias parameters were
estimated for the trials with and without the presentation of a cue (depicted with different shades

of blue).
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Figure A6. Posterior Distributions of the Non Decision Time Parameter : Violin plots
showing the posterior distributions for the non decision time parameter for both models in fits of
the speed, accuracy, and bias conditions.
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Figure A7. Drift Rate Posteriors for the Discrete Difficulty Model: Violin plots showing
the posterior distributions of the estimated drift rate values in the three experimental conditions for
both novices and experts. Separate drift rates were estimated for hard and easy image classes. Since
there is no direct analogue of these drift rate parameters in the CNN based model, no comparison is
made here. See Figure A8 for posterior estimates for the regression parameters that determine drift
rate parameters in that model.
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Figure A8. Posterior Distributions of Drift Rate Slope Parameter in the CNIN Based
Model: Violin plots showing the posterior distributions for the vg,pe parameter. Recall that in the
CNN based model, the drift rate associated with each image is determined by v = Vipter + Vsiope * LO
where LO indicates the log odds value. Thus a higher value of vgp. indicates an increased ability
to translate visual information encoded in the images into evidence for either alternative.



